Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Vet Microbiol ; 291: 110031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412580

RESUMO

Bovine herpesvirus 1 (BoHV-1) is a highly contagious pathogen which causes infectious bovine rhinotracheitis in cattle worldwide. Although it has the ability to evade the host's antiviral innate immune response and establish persistent latent infections, the mechanisms are not fully understood, especially the function of the tegument protein to escape innate immunity and participate in viral replication. In this study, we showed that overexpression of tegument protein UL3 facilitates BoHV-1 replication and suppresses the expression of type-I interferon (IFN-I) and IFN-stimulated genes. Then, STING was identified as the target by which UL3 inhibits the IFN-I signaling pathway, and STING was degraded through the UL3-induced autophagy pathway. Furthermore, overexpression of UL3 promotes the expression of the autophagy-related protein ATG101, thereby inducing autophagy. Further study showed that UL3 enhances the interaction between ATG101 and STING, and then the degradation of STING was reversed following ATG101 silencing in UL3-overexpressing cells during BoHV-1 infection. Our research results demonstrate a novel function of UL3 in regulating host's antiviral response and provide a potential mechanism for BoHV-1 immune evasion.


Assuntos
Infecções por Herpesviridae , Herpesvirus Bovino 1 , Proteínas Virais , Animais , Bovinos , Antivirais , Autofagia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Imunidade Inata/genética , Replicação Viral/genética , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/veterinária , Proteínas Virais/metabolismo
2.
Viruses ; 16(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38400086

RESUMO

The CRISPR/Cas9 system is widely used to manipulate viral genomes. Although Alphaherpesvirinae genomes are large and complicated to edit, in recent years several Pseudorabies virus (PRV) mutants have been successfully generated using the CRISPR/Cas9 system. However, the application of CRISPR/Cas9 editing on another member of alpha herpesviruses, bovine herpesvirus-1 (BHV-1), is rarely reported. This paper reports a rapid and straightforward approach to manipulating herpesviruses genome using CRISPR/Cas9. The recombinant plasmids contained the left and right arm of the thymidine kinase (TK) gene of PRV or of the glycoprotein I (gI) and glycoprotein E (gE) of BHV-1. Upon the cleavage of the TK or gIgE gene by Cas9 protein, this was replaced by the enhanced green fluorescence protein (eGFP) by homologous recombination. With this approach, we generated recombinant TK-/eGFP+ PRV and gIgE-/eGFP+ BHV-1 mutants and then proceeded to characterize their biological activities in vitro and in vivo. In conclusion, we showed that alpha herpesvirus, including PRV and BHV-1, can be rapidly edited using the CRISPR/Cas9 approach paving the way to the development of animal herpesvirus vaccines.


Assuntos
Herpesvirus Bovino 1 , Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Edição de Genes , Sistemas CRISPR-Cas , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Pseudorraiva/prevenção & controle , Glicoproteínas/genética
3.
Viruses ; 15(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896756

RESUMO

Bovine herpesvirus type 1 (BoHV-1) is an important agricultural pathogen that infects cattle and other ruminants worldwide. Though it was first sequenced and annotated over twenty years ago, the Cooper strain, used in this study, was sequenced as recently as 2012 and is currently said to encode 72 unique proteins. However, tandem mass spectrometry has identified several peptides produced during active infection that align with the BoHV-1 genome in unannotated regions. One of these abundant peptides, "ORF M", aligned antisense to the DNA helicase/primase protein UL5. This study characterizes the novel transcript and its protein product and provides evidence to support the existence of homolog protein-coding genes in other Herpesviruses.


Assuntos
Infecções por Herpesviridae , Herpesvirus Bovino 1 , Animais , Bovinos , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Sequência de Bases , Simplexvirus/genética , DNA Primase/genética , Peptídeos/genética
4.
Microbiol Spectr ; 11(4): e0011723, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37227295

RESUMO

Bovine herpesvirus 1 (BoHV-1), an important bovine viral pathogen, causes severe disease in the upper respiratory tract and reproductive system. Tonicity-responsive enhancer-binding protein (TonEBP), also known as nuclear factor of activated T cells 5 (NFAT5), is a pleiotropic stress protein involved in a range of cellular processes. In this study, we showed that the knockdown of NFAT5 by siRNA increased BoHV-1 productive infection and overexpression of NFAT5 via plasmid transfection decreased virus production in bovine kidney (MDBK) cells. Virus productive infection at later stages significantly increased transcription of NFAT5 but not appreciably alter measurable NFAT5 protein levels. Virus infection relocalized NFAT5 protein and decreased the cytosol accumulation. Importantly, we found a subset of NFAT5 resides in mitochondria, and virus infection led to the depletion of mitochondrial NFAT5. In addition to full-length NFAT5, another two isoforms with distinct molecular weights were exclusively detected in the nucleus, where the accumulation was differentially affected following virus infection. In addition, virus infection differentially altered mRNA levels of PGK1, SMIT, and BGT-1, the canonical downstream targets regulated by NFAT5. Taken together, NFAT5 is a potential host factor that restricts BoHV-1 productive infection, and virus infection hijacks NFAT5 signaling transduction by relocalization of NFAT5 molecules in cytoplasm, nucleus, and mitochondria, as well as altered expression of its downstream targets. IMPORTANCE Accumulating studies have revealed that NFAT5 regulates disease development due to infection of numerous viruses, underlying the importance of the host factor in virus pathogenesis. Here, we report that NFAT5 has capacity to restrict BoHV-1 productive infection in vitro. And virus productive infection at later stages may alter NFAT5 signaling pathway as observed by relocalization of NFAT5 protein, reduced accumulation of NFAT5 in cytosol, and differential expression of NFAT5 downstream targets. Importantly, for the first time, we found that a subset of NFAT5 resides in mitochondria, implying that NFAT5 may regulate mitochondrial functions, which will extend our knowledge on NFAT5 biological activities. Moreover, we found two NFAT5 isoforms with distinct molecular weights were exclusively detected in the nucleus, where the accumulation was differentially affected following virus infection, representing a novel regulation mechanism on NFAT5 function in response to BoHV-1infection.


Assuntos
Infecções por Herpesviridae , Herpesvirus Bovino 1 , Humanos , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Fatores de Transcrição NFATC/metabolismo , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Técnicas de Cultura de Células , Fatores de Transcrição/metabolismo
5.
J Virol ; 95(20): e0076821, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319779

RESUMO

Following bovine herpesvirus 1 (BoHV-1) acute infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia are an important site for latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Expression of two key viral transcriptional regulatory proteins, BoHV-1 infected cell protein 0 (bICP0) and bICP4, are regulated by sequences within the immediate early promoter (IEtu1). A separate early promoter also drives bICP0 expression, presumably to ensure sufficient levels of this important transcriptional regulatory protein. Productive infection and bICP0 early promoter activity are cooperatively transactivated by Krüppel-like factor 4 (KLF4) and a type I nuclear hormone receptor (NHR), androgen receptor, glucocorticoid receptor, or progesterone receptor. The bICP0 early promoter contains three separate transcriptional enhancers that mediate cooperative transactivation. In contrast to the IEtu1 promoter, the bICP0 early promoter lacks consensus type I NHR binding sites. Consequently, we hypothesized that KLF4 and Sp1 binding sites are essential for type I NHR and KLF4 to transactivate the bICP0 promoter. Mutating KLF4 and Sp1 binding sites in each enhancer domain significantly reduced transactivation by KLF4 and a type I NHR. Chromatin immunoprecipitation (ChIP) studies demonstrated that occupancy of bICP0 early promoter sequences by KLF4 and type I NHR is significantly reduced when KLF4 and/or Sp1 binding sites are mutated. These studies suggest that cooperative transactivation of the bICP0 E promoter by type I NHRs and a stress-induced pioneer transcription factor (KLF4) promote viral replication and spread in neurons or nonneural cells in reproductive tissue. IMPORTANCE Understanding how stressful stimuli and changes in the cellular milieu mediate viral replication and gene expression in the natural host is important for developing therapeutic strategies that impair virus transmission and disease. For example, bovine herpesvirus 1 (BoHV-1) reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone, which mimics the effects of stress. Furthermore, BoHV-1 infection increases the incidence of abortion in pregnant cows, suggesting that sex hormones stimulate viral growth in certain tissues. Previous studies revealed that type I nuclear hormone receptors (NHRs) (androgen, glucocorticoid, or progesterone) and a pioneer transcription factor, Krüppel-like factor 4 (KLF4), cooperatively transactivate the BoHV-1 infected cell protein 0 (bICP0) early promoter. Transactivation was mediated by Sp1 and/or KLF4 consensus binding sites within the three transcriptional enhancers. These studies underscore the complexity by which BoHV-1 exploits type I NHR fluctuations to enhance viral gene expression, replication, and transmission in the natural host.


Assuntos
Herpesvirus Bovino 1/metabolismo , Transativadores/genética , Ubiquitina-Proteína Ligases/genética , Células A549 , Animais , Sítios de Ligação , Regulação Viral da Expressão Gênica/genética , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Humanos , Proteínas Imediatamente Precoces/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Ativação Viral/genética , Latência Viral/genética , Replicação Viral
6.
Viruses ; 13(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203849

RESUMO

Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoters. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 expression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection, and KLF15 steady-state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following infection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene, and to a lesser extent, bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 promoter activity. Collectively, these studies revealed that HSV-1 and BoHV-1 productive infection increased KLF15 steady-state protein levels, which correlated with increased virus production.


Assuntos
Regulação da Expressão Gênica/genética , Herpesvirus Bovino 1/genética , Herpesvirus Humano 1/genética , Interações entre Hospedeiro e Microrganismos/genética , Fatores de Transcrição Kruppel-Like/genética , Animais , Bovinos , Linhagem Celular , Chlorocebus aethiops , Herpesvirus Bovino 1/metabolismo , Herpesvirus Humano 1/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/classificação , Regiões Promotoras Genéticas , Células Vero , Proteínas Virais/genética , Ativação Viral , Replicação Viral
7.
Virology ; 552: 63-72, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33065464

RESUMO

Bovine herpesvirus 1 (BoHV-1), a significant viral pathogen, establishes latency in sensory neurons. The viral genome contains more than 100 consensus glucocorticoid receptor (GR) regulatory elements (GREs): consequently, stress stimulates viral replication and reactivation from latency. The immediate early transcription unit 1 (IEtu1) and bICP0 early promoters are transactivated by GR and synthetic corticosteroid dexamethasone. The androgen receptor (AR), like GR, is a Type 1 nuclear hormone receptor that binds and stimulates certain promoters containing GREs. Consequently, we hypothesized AR and 5α-Dihydrotestosterone (DHT) stimulate productive infection and key viral promoters. New studies demonstrated AR, DHT, and Krüppel like transcription factor 4 (KLF4) cooperatively stimulated productive infection and bICP0 E promoter activity in mouse neuroblastoma cells (Neuro-2A). KLF15 also cooperated with AR and DHT to stimulate IEtu1 promoter activity. We suggest AR and testosterone increase the prevalence of virus in semen by stimulating viral gene expression and replication.


Assuntos
17-Cetosteroides/metabolismo , Androstanóis/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Bovinos , Linhagem Celular , Dexametasona/análogos & derivados , Dexametasona/metabolismo , Regulação Viral da Expressão Gênica , Genoma Viral , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos , Regiões Promotoras Genéticas , Replicação Viral
8.
Virology ; 548: 136-151, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838935

RESUMO

Bovine herpesvirus envelope glycoprotein E (gE) and, in particular, the gE cytoplasmic tail (CT) is a virulence determinant in cattle. Also, the gE CT contributes to virus cell-to-cell spread and anterograde neuronal transport. In this study, our goal was to map the gE CT sub-domains that contribute to virus cell-to-cell spread property. A panel of gE-CT specific mutant viruses was constructed and characterized, in vitro, with respect to their plaque phenotypes, gE recycling and gE basolateral membrane targeting. The results revealed that disruption of the tyrosine-based motifs, 467YTSL470 and 563YTVV566, individually produced smaller plaque phenotypes than the wild type. However, they were slightly larger than the gE CT-null virus plaques. The Y467A mutation affected the gE endocytosis, gE trans-Golgi network (TGN) recycling, and gE virion incorporation properties. However, the Y563A mutation affected only the gE basolateral cell-surface redistribution function. Notably, the simultaneous Y467A/Y563A mutations produced gE CT-null virus-like plaque phenotypes.


Assuntos
Doenças dos Bovinos/virologia , Citoplasma/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Animais , Bovinos , Endocitose , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Proteínas Virais/genética , Rede trans-Golgi/virologia
9.
PLoS One ; 15(4): e0232093, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330151

RESUMO

Bovine herpesvirus 1 (BoHV1) and 5 (BoHV5) are genetically and antigenically related alphaherpesviruses. Infection with one virus induces protective immunity against the other. However, disease associated with BoHV1 and BoHV5 varies significantly; whereas BoHV1 infection is usually associated with rhinotracheitis and abortion, BoHV5 causes encephalitis in cattle. BoHV5 outbreaks are sporadic and mainly restricted to the South American countries. We report BoHV5 infection for the first time from aborted cattle in India. Based on the characteristic cytopathic effects in MDBK cells, amplification of the viral genome by PCR, differential PCR for BoHV1/BoHV5, nucleotide sequencing and restriction endonuclease patterns, identity of the virus was confirmed as BoHV5 subtype A. Serum samples from the aborted cattle strongly neutralized both BoHV1 and BoHV5 suggesting an active viral infection in the herd. Upon UL27, UL44 and UL54 gene-based sequence and phylogenetic analysis, the isolated virus clustered with BoHV5 strains and showed highest similarity with the Brazilian BoHV5 strains.


Assuntos
Herpesvirus Bovino 5/genética , Herpesvirus Bovino 5/isolamento & purificação , Herpesvirus Bovino 5/metabolismo , Alphaherpesvirinae/genética , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Genoma Viral/genética , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Índia , Filogenia
10.
Arch Virol ; 165(1): 69-85, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31705208

RESUMO

Herpesviruses are predicted to express more than 80 proteins during their infection cycle. The proteins synthesized by the immediate early genes and early genes target signaling pathways in host cells that are essential for the successful initiation of a productive infection and for latency. In this study, proteomic and phosphoproteomic tools showed the occurrence of changes in Madin-Darby bovine kidney cells at the early stage of the infection by bovine herpesvirus 1 (BoHV-1). Proteins that had already been described in the early stage of infection for other herpesviruses but not for BoHV-1 were found. For example, stathmin phosphorylation at the initial stage of infection is described for the first time. In addition, two proteins that had not been described yet in the early stages of herpesvirus infections in general were ribonuclease/angiogenin inhibitor and Rab GDP dissociation inhibitor beta. The biological processes involved in these cellular responses were repair and replication of DNA, splicing, microtubule dynamics, and inflammatory responses. These results reveal pathways that might be used as targets for designing antiviral molecules against BoHV-1 infection.


Assuntos
Infecções por Herpesviridae/metabolismo , Herpesvirus Bovino 1/patogenicidade , Proteômica/métodos , Proteínas Virais/metabolismo , Animais , Bovinos , Linhagem Celular , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Espectrometria de Massas , Fosforilação , Mapas de Interação de Proteínas , Estatmina/metabolismo , Replicação Viral
11.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31776270

RESUMO

An important site for bovine herpesvirus 1 (BoHV-1) latency is sensory neurons within trigeminal ganglia (TG). The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. Expression of four Krüppel-like transcription factors (KLF), i.e., KLF4, KLF6, PLZF (promyelocytic leukemia zinc finger), and KLF15, are induced in TG neurons early during dexamethasone-induced reactivation. The glucocorticoid receptor (GR) and KLF15 form a feed-forward transcription loop that cooperatively transactivates the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter that drives bovine infected cell protein 0 (bICP0) and bICP4 expression. Since the bICP0 gene also contains a separate early (E) promoter, we tested the hypothesis that GR and KLF family members transactivate the bICP0 E promoter. GR and KLF4, both pioneer transcription factors, cooperated to stimulate bICP0 E promoter activity in a ligand-independent manner in mouse neuroblastoma cells (Neuro-2A). Furthermore, GR and KLF4 stimulated productive infection. Mutating both half GR binding sites did not significantly reduce GR- and KLF4-mediated transactivation of the bICP0 E promoter, suggesting that a novel mechanism exists for transactivation. GR and KLF15 cooperatively stimulated bICP0 activity less efficiently than GR and KL4: however, KLF6, PLZF, and GR had little effect on the bICP0 E promoter. GR, KLF4, and KLF15 occupied bICP0 E promoter sequences in transfected Neuro-2A cells. GR and KLF15, but not KLF4, occupied the bICP0 E promoter at late times during productive infection of bovine cells. Collectively, these studies suggest that cooperative transactivation of the bICP0 E promoter by two pioneer transcription factors (GR and KLF4) correlates with stimulating lytic cycle viral gene expression following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone. We predict that increased corticosteroid levels activate the glucocorticoid receptor (GR). Consequently, viral gene expression is stimulated by the activated GR. The immediate early transcription unit 1 promoter (IEtu1) drives expression of two viral transcriptional regulatory proteins, bovine infected cell protein 0 (bICP0) and bICP4. Interestingly, a separate early promoter also drives bICP0 expression. Two pioneer transcription factors, GR and Krüppel-like transcription factor 4 (KLF4), cooperatively transactivate the bICP0 early (E) promoter. GR and KLF15 cooperate to stimulate bICP0 E promoter activity but significantly less than GR and KLF4. The bICP0 E promoter contains enhancer-like domains necessary for GR- and KLF4-mediated transactivation that are distinct from those for GR and KLF15. Stress-induced pioneer transcription factors are proposed to activate key viral promoters, including the bICP0 E promoter, during early stages of reactivation from latency.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Receptores de Glucocorticoides/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sítios de Ligação , Bovinos , Linhagem Celular , Regulação Viral da Expressão Gênica/genética , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/metabolismo , Herpesvirus Bovino 1/patogenicidade , Proteínas Imediatamente Precoces/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/fisiologia , Camundongos , Regiões Promotoras Genéticas/genética , Fator de Transcrição 4/metabolismo , Fatores de Transcrição/metabolismo , Gânglio Trigeminal/virologia , Proteínas Virais/metabolismo , Ativação Viral/genética
12.
Int J Biol Macromol ; 140: 1226-1238, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445153

RESUMO

Bovine herpesvirus 1 (BoHV-1) is a major pathogen of infectious bovine rhinotracheitis in bovine. Previously, we generated the aptamer IBRV A4 using systemic evolution of ligands by exponential enrichment. This aptamer inhibited infectivity of BoHV-1 by blocking viral particle absorption onto cell membranes. In this study, we found that the major tegument protein VP8 of BoHV-1 was involved in inhibition of infectious virus production by IBRV A4. We improved the affinity of IBRV A4 for VP8 by optimizing aptamer's structure and repeat conformation. An optimized aptamer, IBRV A4.7, was constructed with quadruple binding sites and a new stem-loop structure, which had a stronger binding affinity for VP8 or BoHV-1 than raw aptamer IBRV A4. IBRV A4.7 bound to VP8 with a dissociation constant (Kd) value of 0.2054 ±â€¯0.03948 nM and bound to BoHV-1 with a Kd value of 0.3637 ±â€¯0.05452 nM. Crucially, IBRV A4.7 had improved antiviral activity compared to IBRV A4, with a half-maximal inhibitory concentration of 1.16 ±â€¯0.042 µM. Our results also revealed IBRV A4.7 inhibited BoHV-1 production in MDBK cells through blocking nucleocytoplasmic shuttling of viral VP8 in BoHV-1-infected MDBK cells. In conclusion, the aptamer IBRV A4.7 may have potency in preventing outbreaks in herds due to reactivation of latency.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Núcleo Celular/metabolismo , Herpesvirus Bovino 1/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Sítios de Ligação , Bovinos , Linhagem Celular , Camundongos , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Replicação Viral
13.
J Neurovirol ; 25(4): 597-604, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31062246

RESUMO

Bovine herpesvirus type 1 and type 5 (BoHV-1 and BoHV-5) are two alphaherpesviruses that affect cattle with two different syndromes. While BoHV-1 mainly produces respiratory symptoms, BoHV-5 is highly neuropathogenic and responsible for meningoencephalitis in young cattle. The latency-related (LR) gene, which is not conserved between these two herpesviruses, is the only viral gene abundantly expressed in latently infected neurons. The antiapoptotic action of this gene has been demonstrated during acute infection and reactivation from latency and seems to be mainly mediated by a LR protein (ORF-2) which is truncated in amino acid 51 in the case of BoHV-5. In this work, we show that the BoHV-5 LR gene is less efficient at cell survival and apoptosis inhibition in transient as well as in established neuronal cell lines compared to its BoHV-1 homolog. We hypothesize that the BoHV-5 LR gene may have novel functions that are lacking in the BoHV-1 LR gene and that these differences may contribute to its enhanced neuropathogenesis.


Assuntos
Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 5/genética , Rinotraqueíte Infecciosa Bovina/metabolismo , Meningoencefalite/veterinária , Proteínas Virais/genética , Latência Viral/genética , Animais , Apoptose/genética , Bovinos , Linhagem Celular , Expressão Gênica , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/crescimento & desenvolvimento , Herpesvirus Bovino 1/metabolismo , Herpesvirus Bovino 5/crescimento & desenvolvimento , Herpesvirus Bovino 5/metabolismo , Interações Hospedeiro-Patógeno/genética , Rinotraqueíte Infecciosa Bovina/patologia , Rinotraqueíte Infecciosa Bovina/virologia , Meningoencefalite/patologia , Meningoencefalite/virologia , Neurônios/metabolismo , Neurônios/virologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Virais/metabolismo , Ativação Viral
14.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626671

RESUMO

Bovine herpesvirus 1 (BoHV-1) infects bovine species, causing respiratory infections, genital disorders and abortions. VP8 is the most abundant tegument protein of BoHV-1 and is critical for virus replication in cattle. In this study, the cellular transport of VP8 in BoHV-1-infected cells and its ability to alter the cellular lipid metabolism were investigated. A viral kinase, US3, was found to be involved in regulating these processes. In the early stages of infection VP8 was localized in the nucleus. Subsequently, presumably after completion of its role in the nucleus, VP8 was translocated to the cytoplasm. When US3 was deleted or the essential US3 phosphorylation site of VP8 was mutated in BoHV-1, the majority of VP8 was localized in the nuclei of infected cells. This suggests that phosphorylation by US3 may be critical for cytoplasmic localization of VP8. Eventually, the cytoplasmic VP8 was accumulated in the cis-Golgi apparatus but not in the trans-Golgi network, implying that VP8 was not involved in virion transport toward and budding from the cell membrane. VP8 caused lipid droplet (LD) formation in the nuclei of transfected cells and increased cellular cholesterol levels. Lipid droplets were not found in the nuclei of BoHV-1-infected cells when VP8 was cytoplasmic in the presence of US3. However, when US3 was deleted or phosphorylation residues in VP8 were mutated, nuclear VP8 and LDs appeared in BoHV-1-infected cells. The total cholesterol level was increased in BoHV-1-infected cells but not in ΔUL47-BoHV-1-infected cells, further supporting a role for VP8 in altering the cellular lipid metabolism during infection.IMPORTANCE Nuclear localization signals (NLSs) and nuclear export signals (NESs) are important elements directing VP8 to the desired locations in the BoHV-1-infected cell. In this study, a critical regulator that switches the nuclear and cytoplasmic localization of VP8 in BoHV-1-infected cells was identified. BoHV-1 used viral kinase US3 to regulate the cellular localization of VP8. Early during BoHV-1 infection VP8 was localized in the nucleus, where it performs various functions; once US3 was expressed, phosphorylated VP8 was cytoplasmic and ultimately accumulated in the cis-Golgi apparatus, presumably to be incorporated into virions. The Golgi localization of VP8 was only observed in virus-infected cells and not in US3-cotransfected cells, suggesting that this is mediated by other viral factors. Interestingly, VP8 was shown to cause increased cholesterol levels, which is a novel function for VP8 and a potential strategy to supply lipid for viral replication.


Assuntos
Proteínas do Capsídeo/metabolismo , Infecções por Herpesviridae/metabolismo , Herpesvirus Bovino 1/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Animais , Células COS , Bovinos , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/virologia , Complexo de Golgi/virologia , Infecções por Herpesviridae/virologia , Humanos , Sinais de Localização Nuclear/metabolismo , Fosforilação , Vírion/metabolismo , Replicação Viral/fisiologia
15.
J Gen Virol ; 100(3): 497-510, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30694168

RESUMO

Bovine herpesvirus 1 (BoHV-1)-encoded UL49.5 (a homologue of herpesvirus glycoprotein N) can combine different functions, regulated by complex formation with viral glycoprotein M (gM). We aimed to identify the mechanisms governing the immunomodulatory activity of BoHV-1 UL49.5. In this study, we addressed the impact of gM/UL49.5-specific regions on heterodimer formation, folding and trafficking from the endoplasmic reticulum (ER) to the trans-Golgi network (TGN) - events previously found to be responsible for abrogation of the UL49.5-mediated inhibition of the transporter associated with antigen processing (TAP). We first established, using viral mutants, that no other viral protein could efficiently compensate for the chaperone function of UL49.5 within the complex. The cytoplasmic tail of gM, containing putative trafficking signals, was dispensable either for ER retention of gM or for the release of the complex. We constructed cell lines with stable co-expression of BoHV-1 gM with chimeric UL49.5 variants, composed of the BoHV-1 N-terminal domain fused to the transmembrane region (TM) from UL49.5 of varicella-zoster virus or TM and the cytoplasmic tail of influenza virus haemagglutinin. Those membrane-anchored N-terminal domains of UL49.5 were sufficient to form a complex, yet gM/UL49.5 folding and ER-TGN trafficking could be affected by the UL49.5 TM sequence. Finally, we found that leucine substitutions in putative glycine zipper motifs within TM helices of gM resulted in strong reduction of complex formation and decreased ability of gM to interfere with UL49.5-mediated major histocompatibility class I downregulation. These findings highlight the importance of gM/UL49.5 transmembrane domains for the biology of this conserved herpesvirus protein complex.


Assuntos
Doenças dos Bovinos/virologia , Retículo Endoplasmático/virologia , Complexo de Golgi/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Bovinos , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/química , Herpesvirus Bovino 1/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
16.
J Neurovirol ; 25(1): 42-49, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30402823

RESUMO

Following acute infection of mucosal surfaces by bovine herpesvirus 1 (BoHV-1), sensory neurons are a primary site for lifelong latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Two viral regulatory proteins (VP16 and bICP0) are expressed within 1 h after calves latently infected with BoHV-1 are treated with dexamethasone. Since the immediate early transcription unit 1 (IEtu1) promoter regulates both BoHV-1 infected cell protein 0 (bICP0) and bICP4 expressions, we hypothesized that the bICP4 protein is also expressed during early stages of reactivation from latency. In this study, we tested whether bICP4 and bICP22, the only other BoHV-1 protein known to be encoded by an immediate early gene, were expressed during reactivation from latency by generating peptide-specific antiserum to each protein. bICP4 and bICP22 protein expression were detected in trigeminal ganglionic (TG) neurons during early phases of dexamethasone-induced reactivation from latency, operationally defined as the escape from latency. Conversely, bICP4 and bICP22 were not readily detected in TG neurons of latently infected calves. In summary, it seems clear that all proteins encoded by known BoHV-1 IE genes (bICP4, bICP22, and bICP0) were expressed during early stages of dexamethasone-induced reactivation from latency.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Bovino 1/genética , Proteínas Imediatamente Precoces/genética , Rinotraqueíte Infecciosa Bovina/virologia , Células Receptoras Sensoriais/virologia , Gânglio Trigeminal/virologia , Proteínas Virais/genética , Animais , Anticorpos Antivirais/química , Bovinos , Linhagem Celular , Dexametasona/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/virologia , Herpesvirus Bovino 1/crescimento & desenvolvimento , Herpesvirus Bovino 1/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Rinotraqueíte Infecciosa Bovina/patologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/virologia , Masculino , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/patologia , Proteínas Virais/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
17.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185590

RESUMO

Despite differences in the pathogenesis and host range of alphaherpesviruses, many stages of their morphogenesis are thought to be conserved. Here, an ultrastructural study of bovine herpesvirus 1 (BoHV-1) envelopment revealed profiles similar to those previously found for herpes simplex virus 1 (HSV-1), with BoHV-1 capsids associating with endocytic tubules. Consistent with the similarity of their genomes and envelopment strategies, the proteomic compositions of BoHV-1 and HSV-1 virions were also comparable. However, BoHV-1 morphogenesis exhibited a diversity in envelopment events. First, heterogeneous primary envelopment profiles were readily detectable at the inner nuclear membrane of BoHV-1-infected cells. Second, the BoHV-1 progeny comprised not just full virions but also an abundance of capsidless, noninfectious light particles (L-particles) that were released from the infected cells in numbers similar to those of virions and in the absence of DNA replication. Proteomic analysis of BoHV-1 L-particles and the much less abundant HSV-1 L-particles revealed that they contained the same complement of envelope proteins as virions but showed variations in tegument content. In the case of HSV-1, the UL46 tegument protein was reproducibly found to be >6-fold enriched in HSV-1 L-particles. More strikingly, the tegument proteins UL36, UL37, UL21, and UL16 were depleted in BoHV-1 but not HSV-1 L-particles. We propose that these combined differences reflect the presence of truly segregated "inner" and "outer" teguments in BoHV-1, making it a critical system for studying the structure and process of tegumentation and envelopment.IMPORTANCE The alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Herpesvirus Bovino 1/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Bovinos , Linhagem Celular , Chlorocebus aethiops , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Humanos , Células Vero , Vírion/metabolismo , Montagem de Vírus/fisiologia
18.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769345

RESUMO

VP8, the UL47 gene product in bovine herpesvirus-1 (BoHV-1), is a major tegument protein that is essential for virus replication in vivo The major DNA damage response protein, ataxia telangiectasia mutated (ATM), phosphorylates Nijmegen breakage syndrome (NBS1) and structural maintenance of chromosome-1 (SMC1) proteins during the DNA damage response. VP8 was found to interact with ATM and NBS1 during transfection and BoHV-1 infection. However, VP8 did not interfere with phosphorylation of ATM in transfected or BoHV-1-infected cells. In contrast, VP8 inhibited phosphorylation of both NBS1 and SMC1 in transfected cells, as well as in BoHV-1-infected cells, but not in cells infected with a VP8 deletion mutant (BoHV-1ΔUL47). Inhibition of NBS1 and SMC1 phosphorylation was observed at 4 h postinfection by nuclear VP8. Furthermore, UV light-induced cyclobutane pyrimidine dimer (CPD) repair was reduced in the presence of VP8, and VP8 in fact enhanced etoposide or UV-induced apoptosis. This suggests that VP8 blocks the ATM/NBS1/SMC1 pathway and inhibits DNA repair. VP8 induced apoptosis in VP8-transfected cells through caspase-3 activation. The fact that BoHV-1 is known to induce apoptosis through caspase-3 activation is in agreement with this observation. The role of VP8 was confirmed by the observation that BoHV-1 induced significantly more apoptosis than BoHV-1ΔUL47. These data reveal a potential role of VP8 in the modulation of the DNA damage response pathway and induction of apoptosis during BoHV-1 infection.IMPORTANCE To our knowledge, the effect of BoHV-1 infection on the DNA damage response has not been characterized. Since BoHV-1ΔUL47 was previously shown to be avirulent in vivo, VP8 is critical for the progression of viral infection. We demonstrated that VP8 interacts with DNA damage response proteins and disrupts the ATM-NBS1-SMC1 pathway by inhibiting phosphorylation of DNA repair proteins NBS1 and SMC1. Furthermore, interference of VP8 with DNA repair was correlated with decreased cell viability and increased DNA damage-induced apoptosis. These data show that BoHV-1 VP8 developed a novel strategy to interrupt the ATM signaling pathway and to promote apoptosis. These results further enhance our understanding of the functions of VP8 during BoHV-1 infection and provide an additional explanation for the reduced virulence of BoHV-1ΔUL47.


Assuntos
Apoptose , Proteínas do Capsídeo/metabolismo , Dano ao DNA , Herpesvirus Bovino 1/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas do Capsídeo/genética , Caspase 3/genética , Caspase 3/metabolismo , Bovinos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células HEK293 , Células HeLa , Herpesvirus Bovino 1/genética , Humanos
19.
J Gen Virol ; 98(7): 1843-1854, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28671533

RESUMO

In common with other herpes viruses, bovine herpes virus 1 (BHV-1) induces strong virus-specific CD8 T-cell responses. However, there is a paucity of information on the antigenic specificity of the responding T-cells. The development of a system to generate virus-specific CD8 T-cell lines from BHV-1-immune cattle, employing Theileria-transformed cell lines for antigen presentation, has enabled us to address this issue. Use of this system allowed the study to screen for CD8 T-cell antigens that are efficiently presented on the surface of virus-infected cells. Screening of a panel of 16 candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens were presented by two or three class I MHC alleles in each animal. Six CD8 T-cell epitopes were identified in the three IE proteins by screening of synthetic peptides. Use of an algorithm (NetMHCpan) that predicts the peptide-binding characteristics of restricting MHC alleles confirmed and, in some cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV-I-immune cattle and hence are prime-candidate antigens for the generation of a subunit vaccine.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Doenças dos Bovinos/imunologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/genética , Proteínas Imediatamente Precoces/imunologia , Animais , Antígenos Virais/genética , Linfócitos T CD8-Positivos/virologia , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/virologia , Genes Precoces , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/metabolismo , Proteínas Imediatamente Precoces/genética
20.
Virus Res ; 232: 1-5, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28104451

RESUMO

Bovine herpesvirus 1 (BoHV-1) is a significant bovine pathogen that establishes a life-long latent infection in sensory neurons. Previous attempts to develop immortalized bovine neuronal cells were unsuccessful. Consequently, our understanding of the BoHV-1 latency-reactivation cycle has relied on studying complex virus-host interactions in calves. In this study, we tested whether BoHV-1 can infect human (SH-SY5Y) or mouse (Neuro-2A) neuroblastoma cells. We provide new evidence that BoHV-1 efficiently infects SH-SY5Y cells and yields virus titers approximately 100 fold less than bovine kidney cells. Conversely, virus titers from productively infected Neuro-2A cells were approximately 10,000 fold less than bovine kidney cells. Using a ß-Gal expressing virus (gC-Blue), we demonstrate that infection of Neuro-2A cells (actively dividing or differentiated) does not result in efficient virus spread, unlike bovine kidney or SH-SY5Y cells. Additional studies demonstrated that lytic cycle viral gene expression (bICP4 and gE) was readily detected in SH-SY5Y cells: conversely bICP4 was not readily detected in productively infected Neuro-2A cells. Finally, infection of SH-SY5Y and bovine kidney cells, but not Neuro-2A cells, led to rapid activation of the Akt protein kinase. These studies suggest that the Neuro-2A cell line may be a novel cell culture model to identify factors that regulate BoHV-1 productive infection in neuronal cells.


Assuntos
Células Epiteliais/virologia , Herpesvirus Bovino 1/genética , Especificidade de Hospedeiro , Neurônios/virologia , Animais , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Genes Reporter , Herpesvirus Bovino 1/metabolismo , Herpesvirus Bovino 1/patogenicidade , Humanos , Rim/metabolismo , Rim/patologia , Rim/virologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Carga Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...